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Abstract. If F,D : R → R are additive mappings which satisfy

F (xnyn) = xnF (yn) + ynD(xn) for all x, y ∈ R. Then, F is a gen-

eralized left derivation with associated Jordan left derivation D on R.

Similar type of result has been done for the other identity forcing to gen-

eralized derivation and at last an example has given in support of the

theorems.

Keywords: Prime (Semiprime) ring, Additive mappings, Generalized (Jor-

dan) left derivations, Generalized (Jordan) derivations, (Jordan)centralizers.

2010 Mathematics Subject Classification: 16D90, 16W25, 16N60

1. Introduction

In this paper R is an associative ring with identity. A ring R is n-torsion

free, where n > 1 is an integer, in case nx = 0, x ∈ R implies x = 0. A ring R

is prime if aRb = {0} implies a = 0 or b = 0, and is semiprime if aRa = {0}
implies a = 0. An additive mapping d : R → R is called a derivation if

d(xy) = d(x)y + xd(y) holds for all pairs x, y ∈ R and is called a Jordan

derivation in case d(x2) = d(x)x + xd(x) is fulfilled for all x ∈ R. An additive

mapping f : R → R is said to be a generalized derivation if there exists a

derivation d : R → R such that f(xy) = f(x)y + xd(y) for all x, y ∈ R. An

additive mapping D : R → R is said to be a left derivation (resp. Jordan left

derivation) if D(xy) = xD(y) + yD(x) (resp. D(x2) = 2xD(x)) holds for all

x, y ∈ R. An additive mapping D : R→ R is said to be a right derivation (resp.
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Jordan right derivation) if D(xy) = D(x)y + D(y)x (resp. D(x2) = 2D(x)x)

holds for all x, y ∈ R. If D is both left as well as right derivation, then D

is a derivation. Clearly, every left (resp. right) derivation on a ring R is a

Jordan left (resp. Jordan right) derivation but the converse need not be true

in general. Following Zalar [14], an additive mapping T : R → R is called

left (resp. right) centralizer of R if T (xy) = T (x)y (resp. T (xy) = xT (y))

for all x, y ∈ R. In particular T is Jordan left (resp. Jordan right) centralizer

of R if x = y. Obviously, every centralizer is a Jordan centralizer on R but

the converse is not true in general. Zalar in [14], proved: Every Jordan left

centralizer on a 2-torsion free semiprime ring is a left centralizer. Following

Ashraf et. al. [3], an additive mapping F : R → R is said to be a generalized

left derivation (resp. generalized Jordan left derivation) if there exists a Jordan

left deviation D : R → R such that F (xy) = xF (y) + yD(x) ( resp. F (x2) =

xF (x) + xD(x)) for all x, y ∈ R. F is a generalized left derivation if and only

if F is of the form F = T + D, where T right centralizer of R and D is a left

derivation. The concept of generalized left derivations cover the concept of left

derivation and if D = 0, F includes the concept of right centralizer. In 2013

[4], Ashraf et. al had proved that additive mappings F,D : R → R satisfying

the properties F (xn+1) = xnF (x) + nxnD(x) for all x ∈ R, and show that if

R is a (n + 1)!-torsion free ring with identity, then D is Jordan left derivation

and F is generalized Jordan left derivation on R. Similar type of result has

been done in [2, 5]. In view of [2, 4, 5], we extend the results in the following

setting.

2. Main Results

Theorem 2.1. Let n > 1 be a fixed integer and R be any n-torsion free ring. If

F,D : R→ R are additive mappings satisfying F (xnyn) = xnF (yn) +ynD(xn)

for all x, y ∈ R. Then, F is generalized left derivation with associated Jordan

left derivation D on R.

Proof. We have

F (xnyn) = xnF (yn) + ynD(xn) for all x, y ∈ R. (2.1)

Replacing x by e in the above equation, we get D(e) = 0. Again, replace x by

x + e in the above equation to get
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( n

0

)
[F (xnyn) − xnF (yn)− ynD(xn)] +

( n

1

)
[F (xn−1yn)− xn−1F (yn)

− ynD(xn−1)] +
( n

2

)
[F (xn−2yn)− xn−2F (yn)

− ynD(xn−2)] + ... +
( n

n− 1

)
[F (xyn)− xF (yn)

− ynD(x)] +
( n

n

)
[F (yn)− F (yn)− ynD(e)] = 0.

Using (2.1) together with the fact that D(e) = 0, we have

( n

1

)
[F (xn−1yn) − xn−1F (yn)− ynD(xn−1)] +

( n

2

)
[F (xn−2yn)

− xn−2F (yn)− ynD(xn−2)] + ... +
( n

n− 1

)
[F (xyn)

− xF (yn)− ynD(x)] = 0.

Replacing x by kx, we obtain

( n

1

)
kn−1[F (xn−1yn) − xn−1F (yn)− ynD(xn−1)] +

( n

2

)
kn−2[F (xn−2yn)

− xn−2F (yn)− ynD(xn−2)]... +
( n

n− 1

)
k[F (xyn)

− xF (yn)− ynD(x)] = 0.

We can write the above equation as

n−1∑
r=1

( n

r

)
kn−r[F (xn−ryn)− xn−rF (yn)− ynD(xn−r)] = 0 for all x, y ∈ R.

Replace k by 1, 2, · · · , n− 1 in turn and consider the resulting system of n− 1

homogeneous equations to get that the matrix of the system is a Van der Monde

matrix

V =



1 1 ... 1

2 22 ... 2n

. . ... .

. . ... .

. . ... .

n− 1 (n− 1)2 ... (n− 1)n


.

Here |V| = product of positive integer, each of which is less than n − 1, it

implies that

( n

r

)
kn−r[F (xn−ryn)− xn−rF (yn)− ynD(xn−r)] = 0 for all x, y ∈ R,
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r = 1, 2, · · · , n− 1. In particular take r = n− 1, we obtain

( n

n− 1

)
[F (xyn)− xF (yn)− ynD(x)] = 0 for all x, y ∈ R.

This yields

n[F (xyn)− xF (yn)− ynD(x)] = 0 for all x, y ∈ R.

Since R is n-torsion free, we find that

F (xyn) = xF (yn) + ynD(x) for all x, y ∈ R. (2.2)

Again, replacing y by y + e, we obtain

( n

0

)
[F (xyn) − xF (yn)− ynD(x)] +

( n

1

)
[F (xyn−1)− xF (yn−1)

− yn−1D(x)] +
( n

2

)
[F (xyn−2)− xF (yn−2)− yn−2D(x)]

+ ... +
( n

n− 1

)
[F (xy)− xF (y)− yD(x)]

+
( n

n

)
[F (x)− xF (e)−D(x)] = 0.

Taking y = e in (2.2), we have

F (x) = xF (e) + D(x) for all x ∈ R. (2.3)

Using (2.2) and (2.3) in the above relation, we have

( n

1

)
[F (xyn−1) − xF (yn−1)− yn−1D(x)]

+
( n

2

)
[F (xyn−2)− xF (yn−2)− yn−2D(x)]

+ ... +
( n

n− 1

)
[F (xy)− xF (y)− yD(x)] = 0.

Replacing y by ky, we get

n−1∑
r=1

( n

r

)
kn−r[F (xyn−r)− xF (yn−r)− yn−rD(x)] = 0 for all x, y ∈ R.

Using the same steps as we did before equation (2.2), we arrive at

F (xy) = xF (y) + yD(x) for all x, y ∈ R. (2.4)

Replace x by x2 in (2.3) to obtain F (x2) = x2F (e)+D(x2) for all x ∈ R. Again,

replacing y by x in (2.4), we get F (x2) = xF (x) + xD(x) for all x, y ∈ R.

Comparing the previous two relations, we get x2F (e) + D(x2) = xF (x) +
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xD(x)) for all x ∈ R. This implies that D(x2) = x(F (x) − xF (e)) + xD(x))

for all x ∈ R. Again, using (2.3) in the previous relation, we get D(x2) =

2xD(x) for all x ∈ R. Therefore, D is a Jordan left derivation. Hence, F is a

generalized left derivation associated with D.

�

The Following corollary is a consequence of the above theorem:

Corollary 2.2. Let n > 1 be a fixed integer and R be any n-torsion free

semiprime ring. If F,D : R → R are additive mappings satisfying F (xnyn) =

xnF (yn) + ynD(xn) for all x, y ∈ R. Then

(1) D is a derivation on R and [D(x), y] = 0 for all x, y ∈ R,

(2) D is a derivation which maps R into Z(R),

(3) R is commutative or D = 0,

(4) F (x) = xq for all x ∈ R and some q ∈ Ql(RC), where Ql(RC) is left

Martindale ring of quotients,

(5) F is a generalized derivation on R.

Proof. (1) Given that F (xnyn) = xnF (yn) + ynD(xn) for all x, y ∈ R.

Then, by Theorem 2.1, F is generalized left derivation and D is Jor-

dan left derivation. Hence, by [1, Theorem 3.1], D is derivation and

[D(x), y] = 0 for all x, y ∈ R.

(2) Since F (xnyn) = xnF (yn) + ynD(xn) for all x, y ∈ R. Then by Theo-

rem 2.1, F is generalized left derivation and D is Jordan left derivation

on R. Hence, by [13, Theorem 2], we get the required result.

(3) Assume that D 6= 0. We have F (xnyn) = xnF (yn) + ynD(xn) for all

x, y ∈ R. Then, by Theorem 2.1, F is generalized left derivation and D

is Jordan left derivation. Hence, using (1) we find that D is a derivation

and [D(x), y] = 0 for all x, y ∈ R. hence, in particular [D(x), x] = 0

for all x ∈ R. Since R is prime and D is nonzero derivation, R is

commutative by [9, Theorem 2]

(4) We have F (xnyn) = xnF (yn)+ynD(xn) for all x, y ∈ R. Thus by The-

orem 2.1, F is generalized left derivation on R. Since R is a noncom-

mutative 2-torsion free prime ring and F is a generalized left derivation

on R. In view of (3), we have D = 0. Thus we obtain F (xy) = xF (y)

for all x, y ∈ R. That is F is a right centralizer on R. Hence, there

exists q ∈ Ql(RC) such that F (x) = xq for all x ∈ R by Proposition

2.10 of [1].

(5) Since F (xnyn) = xnF (yn) + ynD(xn) for all x, y ∈ R. In view of

Theorem 2.1 and (3), D is a derivation and R is commutative. Since

R is a 2-torsion free prime ring and F is a generalized left derivation,

we find that F (yx) = F (xy) = xF (y) + yD(x) = F (y)x+xD(y) for all
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x, y ∈ R. This implies that F (yx) = F (y)x + yD(x) for all x, y ∈ R.

Hence, F is generalized derivation on R.

�

Lemma 2.3 ([8]). Any linear derivation on a semisimple Banach Algebra is

continuous.

Lemma 2.4 ([10]). A continuous linear derivation on a commutative Banach

Algebra maps algebra into its radical.

Combining the above two results, Thomos proved the following:

Lemma 2.5 ([11]). There does not exist any nonzero linear derivations on

commutative semisimple Banach algebras.

In view of [8, 10, 11], the following consequence has been given:

Theorem 2.6. Let n > 1 be any fixed integer and A be a semisimple Banach

algebra and let F,D : A → A be additive mappings satisfying F (xnyn) =

xnF (yn) + ynD(xn) for all x, y ∈ A. In this case D = 0.

Proof. Since semisimple Banach algebra are semiprime, hence all the assump-

tions of Corollary 2.2 (1) are fulfilled. We have therefore a linear derivation on

semisimple Banach algebra A. Hence, by Theorem 4 of [13], we get D = 0.

�

Now, come to the next theorem.

Theorem 2.7. Let n > 1 be a fixed integer and R be any n-torsion free

semiprime ring. If f, d : R → R are additive mappings satisfying f(xnyn) =

f(xn)yn + xnd(yn) for all x, y ∈ R. Then, f is generalized derivation with

associated derivation d on R.

Proof. We have

f(xnyn) = f(xn)yn + xnd(yn) for all x, y ∈ R. (2.5)

Replacing x by e in the above equation, we get d(e) = 0. Again, replacing x

by x + e in (2.5), we get

( n

0

)
[f(xnyn) − f(xn)yn − xnd(yn)] +

( n

1

)
[f(xn−1yn)− f(xn−1)yn

− xn−1d(yn)] +
( n

2

)
[f(xn−2yn)− f(xn−2)yn

− xn−2d(yn)] + ... +
( n

n− 1

)
[f(xyn)− f(x)yn − xd(yn)]

+
( n

n

)
[f(yn)− f(e)yn − d(yn)] = 0
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Taking x = e in (2.5), we get f(yn) = f(e)yn + d(yn) for all x, y ∈ R. Now

using (2.5) together with the last relation, we have

( n

1

)
[f(xn−1yn) − f(xn−1)yn − xn−1d(yn)]

+
( n

2

)
[f(xn−2yn)− f(xn−2)yn − xn−2d(yn)] + ...

+
( n

n− 1

)
[f(xyn)− f(x)yn − xd(yn)] = 0

n−1∑
r=1

( n

r

)
kn−r[f(xn−ryn)− f(xn−r)yn − xn−rd(yn)] = 0 for all x, y ∈ R.

By the same logic the resulting matrix of the system is a Van der Monde matrix.

Hence,

( n

r

)
kn−r[f(xn−ryn)− f(xn−r)yn − xn−rd(yn)] = 0 for all x, y ∈ R,

r = 1, 2, · · · , n − 1. Now, in particular take r = n − 1 and the fact that R is

n-torsion free, we get

f(xyn) = f(x)yn + xd(yn) for all x, y ∈ R. (2.6)

Again replacing y by y + e and use the fact that d(e) = 0, we obtain

( n

1

)
[f(xyn−1) − f(x)yn−1 − xd(yn−1)] +

( n

2

)
[f(xyn−2)− f(x)yn−2

− xd(yn−2)] + ... +
( n

n− 1

)
[f(xy)− f(x)y − xd(y)]] = 0.

Replace y by ky to get

n−1∑
r=1

( n

r

)
kn−r[f(xyn−r)− f(x)yn−r − xd(yn−r)] = 0 for all x, y ∈ R.

Use the same technique to obtain

f(xy) = f(x)y + xd(y) for all x, y ∈ R. (2.7)

Replacing y by yz in the above relation, we obtain,

f(xyz) = f(x)yz + xd(yz) for all x, y, z ∈ R.

Using (2.7), we arrive at

f(xy)z + xyd(z) = f(x)yz + xd(yz) for all x, y, z ∈ R.
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Again using (2.7), we obtain

f(x)yz + xd(y)z + xyd(z) = f(x)yz + xd(yz) for all x, y, z ∈ R.

On simplifying, we have

x(d(yz)− d(y)z − yd(z)) = 0 for all x, y, z ∈ R.

Multiplying both side by d(yz)− d(y)z − yd(z), we find

(d(yz)− d(y)z − yd(z)x(d(yz)− d(y)z − yd(z)) = 0 for all x, y, z ∈ R.

Using semiprimeness, we conclude that d(yz) = d(y)z + yd(z) for all y, z ∈ R.

Hence d is a derivation. Therefore f is a generalized derivation on R.

�

Corollary 2.8. Let n > 1 be a fixed integer and R be any n-torsion free

semiprime ring. If F : R → R are additive mappings satisfying F (xnyn) =

F (xn)yn and F (xnyn) = xnF (yn) for all x, y ∈ R. Then, F is a centralizer on

R.

Proof. Taking D = d = 0 in Theorem 2.1 and 2.7, we get the required result.

�

The following example is in the favour of our theorems.

Example 2.9. Define R =
{( a 0

0 b

)
| a, b ∈ 2Z8

}
, Z8 is the ring of

addition and multiplication modulo 8. Define mappings F,D, f, d : R →

R by F

(
a 0

0 b

)
=

(
0 0

0 b

)
, D

(
a 0

0 b

)
=

(
a 0

0 0

)
, f

(
a 0

0 b

)
=(

0 0

0 b

)
and d

(
a 0

0 b

)
=

(
a 0

0 0

)
. It is clear that F is not a general-

ized left derivation and f is not a generalized derivation on R but F,D, f, d

satisfy the identities F (x2y2) = x2F (y2) + y2D(x2) and f(x2y2) = f(x2)y2 +

x2d(y2) for all x, y ∈ R.
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